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Lattice Boltzmann for Binary Fluids with Suspended
Colloids
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A new description of the binary fluid problem via the lattice Boltzmann method
is presented which highlights the use of the moments in constructing two equi-
librium distribution functions. This offers a number of benefits, including bet-
ter isotropy, and a more natural route to the inclusion of multiple relaxation
times for the binary fluid problem. In addition, the implementation of solid
colloidal particles suspended in the binary mixture is addressed, which extends
the solid–fluid boundary conditions for mass and momentum to include a sin-
gle conserved compositional order parameter. A number of simple benchmark
problems involving a single particle at or near a fluid–fluid interface are under-
taken and show good agreement with available theoretical or numerical results.

KEY WORDS: Lattice Boltzmann; binary fluids; colloids.

1. INTRODUCTION

The lattice Boltzmann equation (LBE) offers a very attractive way to
study complex fluid flows governed by the Navier–Stokes equations (for a
recent review see, e.g., ref. 1). This is particularly the case for flows involv-
ing irregular and/or changing geometry, e.g., flows in porous media, mul-
tiphase systems, or multicomponent fluid mixtures. In the case of fluid
mixtures where flows can have highly convoluted evolving structure, the
LBE approach avoids the need to track the time evolution of the interfaces
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between two or more components—pinch-offs and topological reorganisa-
tions occur naturally on the lattice. The situation becomes more complex
still if solid particles, or colloids, are suspended in the flow. Such colloi-
dal suspensions exhibit a range of interesting properties, and are of consid-
erable interest in many technological and industrial applications (e.g., the
food, cosmetic, and pharmaceutical industries).

A number of LBE approaches to multiphase and multicomponent flu-
ids have been advanced,(2,3) which adopt different strategies to capture the
important thermodynamic interactions which give rise to surface tension
between the phases. While numerical LBE results for single phase flow are
very robust, multiphase flow is more problematic: if the thermodynamics
is not consistent, spurious unphysical currents can be generated in interfa-
cial regions owing to lack of detailed balance. While a complete, thermo-
dynamically consistent, LBE approach to the binary fluid problem is still
an open issue, the current methods can be used to provide useful results
for many problems of interest, provided the errors incurred are monitored
carefully, e.g., for phase separation dynamics(4,5) and droplet motion and
break-up in shear flow.(6) An alternative approach(7) is to use the LBE in
the momentum sector, but employ a standard finite difference technique
for the evolution of a scalar order parameter describing the composition.

Solid–fluid boundary conditions for stationary objects of complex
geometry are readily implemented within the LBE. In addition, a gen-
eral method for the inclusion of moving solid objects in a single phase
is available(8) which allows the representation of, e.g., moving spheres(9)

and ellipsoids.(10) These objects are generally resolved on the fluid lattice
(they are at least several lattice spacings in size) without the need for com-
plicated curved boundary treatments. Long range hydrodynamic interac-
tions between particles are captured by the LBE and, even when particles
are separated by distances small compared to the lattice size, potentially
important short-range lubrication interactions can be included for simple
objects such as spheres by adding back any unresolved contribution using
an analytical expression.(11,12)

In this work, a number of these different strands are combined and
extended to address a new problem: that of colloids in a binary solvent.
First, a binary fluid LBE following refs. 2 is adopted in which the equi-
librium distributions are cast in a different, and more intuitive form. This
leads to a number of improvements in the behaviour of fluid-only prob-
lems. Second, solid–fluid boundary conditions are extended to include col-
loidal particles. As one important advantage of the LB approach is the
relative ease with which solid–fluid boundary conditions are included, it is
useful to retain LB in both the momentum and thermodynamic sectors.
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The boundary conditions for the two sectors can then be implemented in
a consistent fashion.

The paper is organised as follows. The following section gives an over-
view of the basic LBE algorithm used and the extension of solid–fluid
boundary conditions for moving particles to the order parameter sector.
Section 3 presents a number of results for simple test problems for the
fluid only, and including a single particle.

2. THE LATTICE BOLTZMANN APPROACH

In this section, the LB approach to the binary fluid problem is
described. As this differs from previous approaches,(2,5) so the formalism
is first set out for the lattice-Boltzmann equation (LBE) for the single
phase in a way which makes clear the extension to the lattice kinetic equa-
tion (LKE) describing the second phase.

2.1. LBE for Navier–Stokes

The LBE is commonly used to solve the conservation laws for mass
and momentum describing the hydrodynamics of an isothermal fluid

∂tρ +∇.g =0 (1)

and

∂tg +∇.�=0. (2)

These equations describe the dynamics of the mass density ρ and the
momentum density g=ρv for fluid velocity v. The momentum density can
be written as the mass flux gα and the momentum flux as �αβ so that for
a Newtonian fluid

�αβ =gαvβ +pδαβ −η(∇αvβ +∇βvα)− ζ δαβ∇βvβ, (3)

where Greek subscripts denote Cartesian components. Together, these
equations lead to the Navier–Stokes equations for isothermal flow, namely

ρ(∂tv + v.∇v)=−∇p +η∇2v + ζ∇(∇.v), (4)

where p is the pressure, while η is the shear viscosity and ζ is the bulk
viscosity.
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The LBE is derived from the (continuous time) discrete velocity equa-
tion

∂tfi + ci .∇fi =−Lij (fj −f
eq
j ) (5)

where the right-hand side corresponds to a linearised collision operator.
The discrete velocity set {ci} are the nodes of a Gauss–Hermite quad-
rature(3,14) which ensure that the conserved moments of the distribution
function, fi , have the same values as in the continuum. For the isother-
mal LBE, these are the mass and momentum densities

ρ =
∑

i

fi, (6)

gα =
∑

i

ficiα. (7)

The Boltzmann kinetic description is restricted to a dilute gas with an
ideal equation of state p=nkBT =ρc2

s , where n is the number density and
cs is the isothermal speed of sound. It is convenient to subtract the triv-
ial kinetic contribution to the pressure from the momentum flux tensor to
define a deviatoric momentum flux

Sαβ =�αβ −ρc2
s δαβ =

∑

i

fiQiαβ (8)

where �αβ = ∑
i ficiαciβ is the momentum flux and Qiαβ = ciαciβ − c2

s δαβ

is referred to as the kinetic projector.(1)

In the most commonly used DdQn models, with n velocities (or quad-
rature nodes) in d dimensions, the equilibrium distribution functions are
given by

f
eq
i =wi

[
ρ + ρvαciα

c2
s

+ ρvαvβQiαβ

2c4
s

]
(9)

where the wi are weights defining the quadrature and repeated Greek
indices are understood to be summed over. This form is obtained by
a truncation of the Hermite polynomial expansion of the Maxwell–
Boltzmann distribution at second order.(14) Finally, the BGK collision
matrix Lij must satisfy the constraints imposed by the conservation laws
and rotational symmetry. In the single relaxation time approximation



Binary Fluids with Suspended Colloids 167

Lij = δij /τ , and the shear and bulk viscosities are related to the relaxation
time τ by η=ρc2

s τ and ζ = (2/d)ρc2
s τ , respectively. For multiple relaxation

time models, the above relations remain valid if τ is replaced by separate
relaxation time for the shear and bulk viscous stress.

The final LBGK equation is obtained by a further discretisation
of the continuous time equation. A second-order characteristic-based
method(15) can be followed to obtain

fi(r + ci
t; t +
t)−fi(r; t)=−(fi −f
eq
i )/(τ + 
t

2 ). (10)

This does not introduce lattice artefacts at second order so that the
definition of the viscosity remains as in the continuum, unlike that in a
first order scheme, where the lattice error is absorbed into the viscosity to
give η=ρc2

s (τ −1/2).

2.2. LKE for Cahn–Hilliard

The starting point for the binary fluid mixture in this work is the
(Landau–Ginzburg–Wilson) free energy functional which describes the
total energy of a system of fixed volume as a functional F [φ] of a sin-
gle compositional order parameter φ(r, t). The order parameter measures
the ratio of the number density of particles of the two components of
the mixture n1 and n2 so that φ = (n1 − n2)/(n1 + n2). The choice of the
free energy uniquely defines the physical quantities of interest such as the
fluid–fluid interfacial tension σ and the interfacial width ξ0. The chemical
potential is obtained from the free energy functional via

µ= δF [φ]
δφ

(11)

so that the thermodynamic force density acting on the fluid is then −φ∇µ.
The equation of motion for the order parameter is the Cahn–Hilliard

equation

∂tφ +∇.(φv −M∇µ)=0. (12)

This is a conservation law involving the single conserved quantity φ,
the flux of which φv−M∇µ is made up of an advective component related
to the fluid velocity v and a diffusive component related to the gradient of
the chemical potential by an order parameter mobility M. The mobility is
assumed to be constant and independent of φ. A kinetic relaxation scheme
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for the Cahn–Hilliard equation is obtained by introducing distributions gi

obeying the kinetic relaxation equation

∂tgi + ci .∇gi =−Lφ
ij (gj −g

eq
j ). (13)

The discrete velocities ci are the same as for the LBE, and physical
quantities are again related to moments of the distribution via φ =∑

i gi

and jα = ∑
i giciα. In choosing the form of the equilibrium distribution,

constraints similar to those of ref. 2 are employed, namely

∑

i

g
eq
i =φ, (14)

∑

i

g
eq
i ciα =φvα, (15)

∑

i

g
eq
i ciαciβ =µδαβ +φvαvβ. (16)

While the physical interpretation of the constraints on the zeroth and
first moments is clear, that for the second moment is somewhat less so.
There are two contributions, the first of which ensures a diffusive contribu-
tion to the evolution of the order parameter related to the chemical poten-
tial, while the second represents an advective flux related to the velocity
field. It is then possible to write down an equilibrium distribution by anal-
ogy with Eq. (9), i.e.,

g
eq
i =wi

[
φ + φvαciα

c2
s

+ (µδαβ +φvαvβ −φc2
s δαβ)Qiαβ

2c4
s

]
. (17)

While this choice satisfies the above constraints, it is not unique. As it
turns out, a slightly modified version is required in practice (see following
section).

Further discretisation again provides an LBGK equation with a sin-
gle relaxation time for the order parameter

gi(r + ci
t; t +
t)−gi(r; t)=−(gi −g
eq
i )/(τφ + 
t

2 ). (18)

The order parameter mobility is related to the relaxation time via
M = c2

s τ
φ , which again can be adjusted to absorb the discrete lattice cor-

rection. Note that the relaxation time is not fixed in this approach, in
contrast to previous work.



Binary Fluids with Suspended Colloids 169

2.3. Implementation

The choice of free energy functional follows that of ref. 5 where

F [φ]=
∫

dr
[ 1

2Aφ2 + 1
4Bφ4 + 1

2κ(∇φ)2]. (19)

This describes a symmetric binary mixture in which the bulk free energy
is related to two parameters A and B, while a term in a third parameter
κ penalises gradients in the order parameter, i.e., it tends to minimise cur-
vature of the interface. The fluid–fluid interfacial tension is then

σ = (−8κA3/9B2)1/2. (20)

If the further constraint that A = −B < 0 is added, then the order
parameter lies predominantly on the interval [−1,1]. The equilibrium
interfacial profile is a tanh with characteristic width

ξ eq = (2κ/A)1/2. (21)

For the results presented in this work, the thermodynamic force arising
from the order parameter sector is introduced via a correction to the equi-
librium stress from a chemical pressure tensor

Pαβ =
[

1
2Aφ2 + 3

4Bφ4 −κφ∇2φ − 1
2κ(∇φ)2

]
δαβ +κ∇αφ∇βφ. (22)

Having made these choices, the lattice Boltzmann algorithm of colli-
sion followed by propagation can be implemented in the normal way. The
post-collision distributions, denoted f �

i , are based on Eq. (9) so that

f �
i =wi

[
ρ� + g�

αciα

c2
s

+
S�

αβQiαβ

2c4
s

]
(23)

where the density and momentum are unchanged by the collision process
so that ρ� = ρ and g�

α = gα. The deviatoric stress is relaxed with a single
relaxation time satisfying η=ρc2

s τ

S�
αβ =Sαβ − (Sαβ −S

eq
αβ)/(τ + 
t

2 ) (24)
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where S
eq
αβ = ρuαuβ + Pαβ . Note that this reprojection of the physical

properties to the distribution readily admits the use of multiple relaxa-
tion times, e.g., if separate values for the shear and bulk viscosities are
required.

For the order parameter, there is only one conserved quantity in the
collision φ� = φ, where again the star refers to post-collision quantities.
The order parameter flux is relaxed with single relaxation time satisfying
M = c2

s τ
φ so that

j�
α = jα − (jα − j eq

α )/(τφ + 
t
2 ) (25)

with j
eq
α =φvα. Finally, the values of µ and v are known, allowing a repro-

jection of the physical quantities to the g�
i distributions. If the equilibrium

distributions Eq. (17) are used the model is, in general, numerically unsta-
ble. A simple finite-difference expansion(13) of the evolution equation (not
shown) shows a spurious up-gradient diffusion arises which is the cause of
the instability. Instead, it is possible to use

g�
i =φ�δi0 +wi

[
j�
αciα

c2
s

+ (µδαβ +φ�vαvβ)Qiαβ

2c2
s

]
(26)

where the δi0 has the effect of moving most of the order parameter into
the non-propagating rest distribution g0. This choice is found to have
very good stability properties, while also satisfying the constraints on the
moments of gi .

2.4. Colloidal Particles

A very general method for the representation of solid particles within
the LB approach was first put forward by Ladd.(8) Solid particles (of any
shape) can be defined by a boundary surface which intersects a set of
vectors {cb
t} which connect lattice nodes inside and outside the surface.
These are referred to as boundary links. In the original approach, this set
of links defined a (spherical) shell with fluid occupying all lattice nodes
both inside and outside the “solid” object. While this so-called internal
fluid can be criticised as unphysical, it actually exerts significant effect on
the dynamics of the particle in a single phase flow only on the time scale
that it takes sound waves to cross the particle.(17) However, in a binary
fluid mixture, it becomes essential to have truly solid particles to prevent
possible unphysical transfer of fluid across particle surfaces. Such unphys-
ical transfer would impact on the net composition of the real fluid (i.e.,
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that outside the particles). This is particularly true for particles which wet
one species of fluid preferentially (non-neutral wetting), where a particle
might capture one species of fluid and hence unbalance the net composi-
tion and/or generate spurious thermodynamic forces in the region of the
surface. A number of implementations of truly solid particles have been
developed;(16,17) this work extends that of Nguyen and Ladd(11) to the
binary fluid problem.

A schematic diagram showing the distribution of links for a section
of a spherical particle is shown in Fig. 1. The centre of a sphere of radius
a at r0 defines the position of the links, and the particle moves smoothly
across the lattice with linear velocity U and angular velocity �. Boundary
nodes are defined to be half way along the links, which the set of vectors
joining the centre of the sphere to the boundary nodes denoted {rb}. For
a single integral particle (having a full complement of links)

∑

b

wcb
cb =0 (27)

and

∑

b

wcb
(rb × cb)=0 (28)

where wcb
are again the quadrature weights appropriate for the boundary

links. These results will be useful in the next section.

Fig. 1. A schematic showing the distribution of boundary links for a section of a spheri-
cal particle. The nominal radius of the particle is a, while the vector joining the centre to the
boundary nodes is rb. If the particle moves relative to the lattice, fluid nodes may be exposed
(right), in which case fluid with appropriate properties must be added back. The actual lattice
used in calculations is D3Q15. (Colour Online.)
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2.4.1. Boundary Conditions and Particle Dynamics

The boundary condition developed by Ladd is usually referred to as
bounce-back on links (BBL). For a moving particle, this takes the incom-
ing distribution at the solid–fluid boundary, fb, and reflects it back along
the incoming direction

fb′ =fb −2wcb
ρub.cb/c

2
s (29)

where cb′ =−cb. The correction is related to the local solid body velocity
at the boundary node

ub =U +�× rb, (30)

and has the effect of transferring mass from the trailing edge of the
particle to the leading edge. If the approximation is made that ρ ≈ ρ0,
i.e., that the density is approximately constant around the particle, then
Eqs. (27–30) can be combined to show that the BBL applied around the
whole particle conserves mass.

Conservation of linear and angular momentum entails computing the
momentum transfer from the fluid to the particle as a result of BBL, and
updating the particle linear and angular velocity appropriately. For this,
the fully implicit method described by Nguyen and Ladd(11) is used.

The BBL condition for density is extended to the order parameter(18)

so that, at the surface, the distributions gb are again reflected with a
correction

gb′ =gb −2wcb
φub.cb/c

2
s . (31)

However, the order parameter φ around the particle cannot, in general, be
approximated by a constant as is the case for density. This means that the
order parameter is not conserved at BBL by an amount

δφ =2
∑

b

wcb
φub.cb/c

2
s (32)

for a given particle. To ensure the composition of the fluid does not drift
over time, the deficit or excess δφ at a given step is added back as a cor-
rection at the following time step:

gb′ =gb −2wcb
φub.cb/c

2
s −wcb

δφ/
∑

b

wcb
. (33)
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The size of the additional term is generally small compared with the
term in ub.cb, so this represents a negligible perturbation to the motion.

Perhaps more serious are the corrections that arise when the parti-
cle changes shape as it moves across the lattice. When the particle motion
exposes a fluid lattice node or recovers a solid node, fluid with the appro-
priate properties must be added or removed. For density, this gives rise to
a correction to the BBL Eq. (29) that ensures the mean fluid density ρ0
does not drift.(11) A similar correction can be made in the order param-
eter sector which ensures that the mean fluid composition φ0 does not
change. For example, if fluid is added at a newly exposed lattice node,
then new properties are determined by a linear interpolation of the dis-
tribution functions at adjacent fluid sites. For order parameter, an extra
correction to the BBL at the following step of δφ = (φ − φ0) is required
to maintain mean fluid composition, φ being the order parameter added
or removed. These corrections lead to small unphysical fluctuations in
the order parameter near a moving colloid surface. At present, these are
accepted as the cost of preventing drift in the fluid composition.

Finally, the gradient in the order parameter field is required to com-
pute Pαβ from Eq. (22). Near the solid particles, these gradients are com-
puted following(18) where the order parameter is extrapolated along links
to the boundary nodes. In this work only neutral wetting is considered
where the contact angle between the solid and the fluid–fluid interface is
90 degrees. It should be noted that in imparting the thermodynamic force
to the fluid via the stress Pαβ , there is no direct thermodynamic force
on the colloid. The order parameter only then affects the particle motion
indirectly via the fluid velocity fluid.

2.4.2. Particles Close to Contact

The BBL for the density distribution functions fi allows the net
hydrodynamic force and torque on a particle to be computed, from which
the particle velocity and position can be updated in turn. For an isolated
particle this is straightforward. However, if two or more moving parti-
cles are close enough on the lattice scale that there are no fluid sites in
the interstice, the full lubrication force between the particles will not be
resolved. In this case, it is possible to add back the unresolved part from
the analytical expressions available for pairwise forces between spheres(21)

and, after appropriate calibration, recover the correct lubricating behav-
iour at close approach.(11)

The same effect can occur in the order parameter sector when, for
example, two particles are close together at a fluid–fluid interface. The
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particles should experience capillary forces owing to the curvature of the
interface in the gap between them, but, again, if no fluid is present this
force will not be resolved. Unfortunately, there is no simple way to add
back the unresolved force as is done for the hydrodynamic lubrication
as the capillary force depends in a complex way on the curvature of the
interface in the vicinity of the particles. While these capillary forces may
be important for some problems, they do not have the same impact as
the lubrication forces in, for example, preventing the particles overlapping.
However, the results presenting in the following section only consider a
single particle. Calibration of the hydrodynamic radius of different parti-
cles for the single fluid is carried out following;(11) these are assumed to
remain unchanged for the binary fluid.

3. RESULTS

3.1. Fluid Only

As a demonstration that the equilibrium distributions presented in the
previous section lead to better behaviour in the fluid sector than those
used previously, Fig. 2 shows a comparison of results for a simple test
problem. An initially steady spherical fluid droplet of one phase is initia-
lised surrounded by the second phase. The system, here 643 lattice sites
with periodic boundary conditions, is then allowed to relax for a few hun-
dred time steps. This problem is repeated for two parameter sets taken
from Table 3 of ref. 5 corresponding to surface tensions of σ =0.0042 and
σ = 0.055. While there is little visible difference between the results for
the lower surface tension, anisotropy in the old distributions is exposed
at higher surface tensions which do not infect the new distributions. This

Fig. 2. An initially steady spherical interface between two fluids is allowed to relax for
some 100s of time steps. The LBE method described in ref. 2 (“SOY”) is compared with the
new method. While the two methods give similar results at surface tension 0.0042 (a) and
(b), anisotropies are exposed using the SOY distributions at higher surface tension 0.055 (c)
and (d) (Colour Online).
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improved behaviour is also manifest in improved numerical stability. While
by no means unconditionally stable, use of the new distributions does,
for example, supress instability (particularly in the late stages of spinodal
decompsoition) in the parameter range investigated by Kendon et al.(5)

3.2. Single Particle at Fluid–Fluid Interface

A spherical particle subject to gravity may be suspended at a fluid–
fluid interface by interfacial tension. For a particle which has a density
difference 
ρ with the surrounding fluid, the key dimensionless number in
this situation is the Bond number

Bo=a2
ρg/σ (34)

where g is the gravitational acceleration. The Bond number expresses the
balance between the downward (or upward for buoyant particles) force
and the opposing interfacial tension. If Bo �O(1) the interfacial tension
can support the particle with little deformation. As Bo increases, the inter-
face bows downward until the particle can no longer be supported. For a
neutrally wetting particle with a contact angle of 90◦ between solid and
fluid–fluid interface, the critical Bond number is 3/4; particles break away
from the interface for higher values.

In the LB model, a single particle of radius a is placed at rest across
an initially flat interface and subject to a downward force. The particle is
allowed to fall until it comes to rest, in which case the equilibrium dis-
placement below the level interface is measured, or it detaches from the
interface. The width of the system in the horizontal direction is at least
10a so that there is no significant curvature of the interface at the peri-
odic boundary conditions. In addition, the second interface required in the
system is placed at sufficient distance that it does not affect the motion of
the particle.

Figure 3 shows the normalised displacement h/a as a function of
Bond number for a number of different particle sizes. For Bo < 0.01 the
interface is essentially rigid with no significant displacement, while the dis-
placement increases to a significant fraction of the particle size for higher
Bond numbers. The agreement between the numerical results and the theo-
retical result is generally excellent. As Bo approaches the critical value of
3/4 the smaller particles drop somewhat below the theoretical curve and
can detach from the interface at Bond numbers as low as 0.55. This is
likely to be caused by a poor representation of the contact line for smaller
discrete particles.
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Fig. 3. The normalised equilibrium displacement z/a of a single particle below an initially
flat interface as a function of Bond number. The different symbols represent particles of
different radius: a =2.3 circles, a =3.71 triangles, and a =4.77 squares. The curve is the the-
oretical result(19) is valid for Bo�1. The particle detaches from the interface for Bond num-
bers higher than the critical value B =3/4. (Colour Online.)

3.3. Particle Approaching a Fluid–Fluid Interface

As a second test of particle motion in a binary mixture, the drag
on a single sphere sedimenting toward a stationary fluid–fluid interface is
computed (Fig. 4). First, the mean drag on the sphere is obtained in a sin-
gle phase LB calculation to provide the calibration 6πηa as for the hydro-
dynamic radius (the nominal radius used here is a =2.3). The drag is then
recomputed for the same particle in the binary fluid as it sediments ver-

Fig. 4. The drag (normalised by 6πηa) on a single sphere sedimenting toward a stationary
fluid–fluid interface as a function of the normalised separation h/a. The solid line is based
on tabulated data from, ref. 20 while the symbols represent the current model: triangles rep-
resent interfacial width ξ eq =0.8 and crosses ξ eq =1.6 lattice units. (Colour Online.)
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tically toward a horizontal fluid–fluid interface. The Bond number is kept
small enough that there is little deformation in the interface as the particle
approaches. The drag on the sphere is measured as a function of the nor-
mal separation h/a; as the exact value depends upon the position of the
particle relative to the lattice, the symbols in Fig. 4 represent an average
over 20 different particle configurations and binned at intervals in h/a.

The results show that, far from the interface, the drag is very similar
to that seen in the single phase. This suggests the redistribution of order
parameter as the particle moves does not strongly influence the dynam-
ics. As the particle approaches the interface, the drag increases but then
decreases sharply as the leading edge of the particle touches the inter-
face. The effect of differing interfacial width is shown: the sharper inter-
face induces a steeper rise in the drag as the particle approaches. However,
in both cases the particle is finally captured by the interface. For compari-
son, the exact results for a similar problem in which a sphere approaches a
flat interface of zero thickness is shown.(20) In this case, the particle never
actually reaches the interface.

4. CLOSING REMARKS

This work has demonstrated the use of a new binary fluid lattice
Boltzmann approach applied to the problem of colloidal particles. The
representation of colloidal particles within an LBE binary fluid allows
a large number of interesting physical problems to be investigated. The
results presented shown an excellent agreement with exact results for a
number of simple test problems, and provides confidence that the approx-
imations made in the approach do not result in undue errors.

A number of potential improvements can be identified. First, the ther-
modynamic force follows(2) in entering via the equilibrium stress. This can
be added directly as an additional force on the fluid in the LBE. The
implementation of this additional force in the presence of solid particles
requires some care and is addressed elsewhere.(22) Second, the problem of
resolving near contact capillary forces would be most elegantly addressed
via the use of a finite-volume like approach where there is always some
fluid retained in the interstice between particles. This approach would also
have the benefit of preventing abrupt changes in the discrete shape of a
moving particle. However, this would represent a considerable increase in
complexity over the current approach.

In the meantime, the work demonstrates the flexibility of the lat-
tice Boltzmann method in addressing problems that are very difficult to
address at all, and currently intractable using other methods.
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